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Abstract

The heat equation with homogeneous Dirichlet boundary conditions was solved for a slice
of pie cooling on a slab of ice cream. The method was finding a Green’s function for a source
term, then modifying it to solve the original problem. Evaluation of the series solution showed
that it took 22 minutes to cool the pie from 375°F to 85°F . The reference was the course
notes [1].

Note: This was the term project for the course ECH 259 (Advanced Engineering Mahe-
matics) at UC Davis taught by Prof. Greg Miller

1 Introduction
Consider a piece of pie with the following dimensions: radius: 5”, angle 40°, and thickness: 1.5”.

40° 5”

1.5”

Assume the pie came out of the oven with a homogeneous initial temperature 375°F, and rests on a
slab of ice cream with constant temperature 32°F. The room temperature is 70°F. The objective is
to determine how long it will take the pie to reach an average internal temperature of 85°F. Assume
the temperature of the outer surface of the pie is equal to the temperature of the room. The first
step is to solve the problem analytically. To do this, the problem will be modified, but in a way
so that a re-useable Green’s function can be generated. Then, the Green’s function will be used to
solve the original problem.
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2 Analytic solution
The heat equation is

∂T

∂t
= α△T

Where
T = temperature, °C
t = time, s
α = thermal diffusivity = k

ρcp
, m

2

s

k = thermal conductivity, J
m°C

ρ = density, kg
m3

cp = specific heat capacity, J
kg°C

The problem was changed into the international system of units. Using this change, the objective was
to solve for time at which the average internal temperature of the pie reaches 29.4 °C. The thermal
diffusivity of custard was measured by Betta, et. al (2009), and found to be 1.34x10−7 ± 0.03m2

s
[2]. This was used for the thermal diffusivity of the pie.

In cylindrical coordinates, the heat equation is

∂T

∂t
= α

[
1

r

∂

∂r

(
r
∂T

∂r

)
+

1

r2
∂2T

∂θ2
+
∂2T

∂z2

]

Subject to the boundary conditions
T (0, r, θ, z) = 190.6
T (t, a, θ, z) = 21.1
T (t, r, θ, h) = 21.1
T (t, r, θ, 0) = 0.0
T (t, r, 2π/9, z) = 21.1
T (t, r, 0, z) = 21.1

The first step is to get rid of all of the room temperature inhomogeneities using a change of variables.

u = T − 21.1

Now, the boundary conditions, in °C, are
u(0, r, θ, z) = 169.5
u(t, a, θ, z) = 0
u(t, r, θ, h) = 0
u(t, r, θ, 0) = −21.1
u(t, r, 2π/9, z) = 0
u(t, r, 0, z) = 0

There are two inhomogeneities remaining: the initial condition and the pie-ice cream boundary.
These will be dealt with by changing the problem again to include a source term made up of Dirac
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delta functions located at the coordinates of the inhomogeneous boundary conditions. This allows
one to integrate over the domain and only recover the inhomogeneities where they are relevant.

∂gsrc
∂t

= α

[
1

r

∂

∂r

(
r
∂gsrc
∂r

)
+

1

r2
∂2gsrc
∂θ2

+
∂2gsrc
∂z2

]
+

1

r
δ(r − r0)δ(θ − θ0)δ(z − z0)

The next step is to take the Laplace transform of everything.

L{gsrc(t, r, θ, z)} = Gsrc(s, r, θ, z)

The heat equation becomes

sGsrc = α

[
1

r

∂

∂r

(
r
∂Gsrc

∂r

)
+

1

r2
∂2Gsrc

∂θ2
+
∂2Gsrc

∂z2

]
+

∫ ∞

0

1

r
δ(r − r0)δ(θ − θ0)δ(z − z0)e

−stdt

The Dirac deltas are zero everywhere, except for when t = t0, thus

sGsrc = α

[
1

r

∂

∂r

(
r
∂Gsrc

∂r

)
+

1

r2
∂2Gsrc

∂θ2
+
∂2Gsrc

∂z2

]
+

1

r
δ(r − r0)δ(θ − θ0)δ(z − z0)e

−st0

At this point, the boundary conditions and initial condition are all homogeneous, because they have
been accounted for by the source term.
Gsrc(0, r, θ, z) = 0
Gsrc(t, a, θ, z) = 0
Gsrc(t, r, θ, h) = 0
Gsrc(t, r, θ, 0) = 0
Gsrc(t, r, 2π/9, z) = 0
Gsrc(t, r, 0, z) = 0

Remark 1 (Solving the wrong problem). The boundary conditions are all homogeneous because of
the delta functions in the source term. Thus, this is not the same as the original problem. However,
by solving this new problem a reuseable Green’s function can be obtained, which will be used to
solve the original problem by integrating it over the inhomogeneities.

2.1 Finding the re-useable Green’s function
Now, the term ∂2Gsrc

∂z2
can be recognized as a Sturm-Liouville operator. It is expanded using a sine

series.

Gsrc(s, r, θ, z) =
∞∑
n=1

an(s, r, θ)sin
(nπz
H

)
an periodic in z
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Substituting the definition for u into the differential equation yields

s

α

[
∞∑
n=1

an(s, r, θ)sin
(nπz
H

)]
=

1

r

∂

∂r

(
r
∂

∂r

[
∞∑
n=1

an(s, r, θ)sin
(nπz
H

)])

+
1

r2
∂2

∂θ2

[
∞∑
n=1

an(s, r, θ)sin
(nπz
H

)]
+

∂2

∂z2

[
∞∑
n=1

an(s, r, θ)sin
(nπz
H

)]
+

1

rα
δ(r − r0)δ(θ − θ0)δ(z − z0)e

−st0

Evaluate the z derivative. Then, integrate everything over the domain of z, and multiply by a
particular eigenfunction, sin(n′πz

H
)∫ H

0

s

α

[
∞∑
n=1

an(s, r, θ)sin
(nπz
H

)
sin

(
n′πz

H

)]
dz

=

∫ H

0

1

r

∂

∂r

(
r
∂

∂r

[
∞∑
n=1

an(s, r, θ)sin
(nπz
H

)])
sin

(
n′πz

H

)
dz

+

∫ H

0

1

r2
∂2

∂θ2

[
∞∑
n=1

an(s, r, θ)sin
(nπz
H

)]
sin

(
n′πz

H

)
dz

−
∫ H

0

[
∞∑
n=1

an(s, r, θ)sin
(nπz
H

)(n2π2

H2

)]
sin

(
n′πz

H

)
dz

+

∫ H

0

1

rα
δ(r − r0)δ(θ − θ0)δ(z − z0)e

−st0sin

(
n′πz

H

)
dz

Rearrange, recognizing that the coefficients an cannot be pulled outside any derivative, but the
sums of the sine functions can be. This is because everything in the equation is a linear operator,
and the sines are not a function of r or θ, the variables the remaining derivatives are taken with
respect to. ∫ H

0

s

α

∞∑
n=1

an(s, r, θ)sin
(nπz
H

)
sin

(
n′πz

H

)
dz

=

∫ H

0

∞∑
n=1

1

r

∂

∂r

(
r
∂

∂r
an(s, r, θ)

)
sin
(nπz
H

)
sin

(
n′πz

H

)
dz

+

∫ H

0

∞∑
n=1

1

r2
∂2

∂θ2
(an(s, r, θ)) sin

(nπz
H

)
sin

(
n′πz

H

)
dz

−
∫ H

0

∞∑
n=1

an(s, r, θ)sin
(nπz
H

)(n2π2

H2

)
sin

(
n′πz

H

)
dz

+
1

rα
δ(r − r0)δ(θ − θ0)e

−st0
∫ H

0

δ(z − z0)sin

(
n′πz

H

)
dz

Recognize that the infinite sums are zero for all instances where n ̸= n′. Thus, the infinite sum over
a function of n times a function of n′ works like a Kronecker delta, δnn′ , collapsing the indices. This
also changes the index of the sine function in the source term. Also recognize that when integrated
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over the domain, the z Dirac delta in the source term returns any function of z in the same integral,
but evaluated at the inhomogeneity, z0. ∫ H

0

s

α
an(s, r, θ)sin

2
(nπz
H

)
dz

=

∫ H

0

1

r

∂

∂r

(
r
∂

∂r
an(s, r, θ)

)
sin2

(nπz
H

)
dz

+

∫ H

0

1

r2
∂2

∂θ2
(an(s, r, θ)) sin

2
(nπz
H

)
dz

−
∫ H

0

an(s, r, θ)sin
2
(nπz
H

)(n2π2

H2

)
dz

+
1

rα
δ(r − r0)δ(θ − θ0)e

−st0sin
(nπz0
H

)
Now, the integral of sin2

(
nπz
H

)
must be done. This is done easily using a trig identity substitution,

and even more easily using Wolfram alpha. However, trig identities are hard to remember but are
easily obtained using Demoive’s theorem.

Remark 2 (Demoive’s theorem).

Start with the Euler formula eiθ = cos(θ) + isin(θ)

Recognize that
(
eiθ
)2

= e2iθ

Thus (cos(θ) + isin(θ))2 = cos(2θ) + isin(2θ)

cos2(θ) + 2isin(θ)cos(θ)− sin2(θ) = cos(2θ) + isin(2θ)

The above is an equation with real and imaginary parts, which can be equated separately.
Re : cos2(θ)− sin2(θ) = cos(2θ) Im : 2isin(θ)cos(θ) = isin(2θ)

Use the left one to get a trig identity for sin2

sin2(θ) = −cos(2θ) + cos2(θ)

sin2(θ) + sin2(θ) = −cos(2θ) + cos2(θ) + sin2(θ)

2sin2(θ) = −cos(2θ) + 1

sin2(θ) =
1

2
(1− cos(2θ))

Returning to the main problem, use the identity to solve the integral.∫ H

0

sin2
(nπz
H

)
dz =

∫ H

0

1

2

(
1− cos

(
2nπz

H

))
dz

=
1

2

[
x− sin

(
2nπz

H

)
H

2nπ

] ∣∣∣∣∣
H

0

=
1

2

[
x− sin

(
2nπz

H

)
H

2nπ

]
=
H

2
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Now put the solution to the integral into the four places where it was found in the last statement
of the main problem.

s

α
an(s, r, θ)

H

2
=

1

r

∂

∂r

(
r
∂

∂r
an(s, r, θ)

)
H

2

+
1

r2
∂2

∂θ2
(an(s, r, θ))

H

2
− an(s, r, θ)

(
n2π2

H2

)
H

2

+
1

rα
δ(r − r0)δ(θ − θ0)e

−st0sin
(nπz0
H

)
dz

Collect terms.

an(s, r, θ)

(
s

α
+
n2π2

H2

)
=

1

r

∂

∂r

(
r
∂

∂r
an(s, r, θ)

)
+

1

r2
∂2

∂θ2
(an(s, r, θ))

+
2

Hrα
δ(r − r0)δ(θ − θ0)e

−st0sin
(nπz0
H

)
The z expansion is finished. The next step is to conduct a similar expansion on the ∂2

∂θ2
Sturm-

Liouville operator. The same steps are used. First, propose that

an(s, r, θ) =
∞∑
m=1

bnm(s, r)sin

(
mπθ

ψ

)
Where
ψ = 40° = 2π

9

bnm zero at θ = 0 and at θ = ψ

As before, substitute the sine expansion into the differential equation.[
∞∑
m=1

bnm(s, r)sin

(
mπθ

ψ

)](
s

α
+
n2π2

H2

)
=

1

r

∂

∂r

(
r
∂

∂r

[
∞∑
m=1

bnm(s, r)sin

(
mπθ

ψ

)])

+
1

r2
∂2

∂θ2

([
∞∑
m=1

bnm(s, r)sin

(
mπθ

ψ

)])
+

2

Hrα
δ(r − r0)δ(θ − θ0)e

−st0sin
(nπz0
H

)
Take the second derivative with respect to θ, Multiply by a particular eigenfunction and integrate
over the domain. Make sure to treat the term with the r derivative and the following term together,
as later it is necessary to put it in the form of a Bessel function.(

s

α
+
n2π2

H2

)∫ ψ

0

∞∑
m=1

bnm(s, r)sin

(
mπθ

ψ

)
sin

(
m′πθ

ψ

)
dθ

=

∫ ψ

0

∞∑
m=1

[
1

r

∂

∂r

(
r
∂

∂r
bnm(s, r)sin

(
mπθ

ψ

))
− m2π2

r2ψ2

(
bnm(s, r)sin

(
mπθ

ψ

))]
sin

(
m′πθ

ψ

)
dθ

+

∫ ψ

0

2

Hrα
δ(r − r0)δ(θ − θ0)e

−st0sin
(nπz0
H

)
sin

(
m′πθ

ψ

)
dθ
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As before, the sums act as δmm′ . (
s

α
+
n2π2

H2

)∫ ψ

0

bnm(s, r)sin
2

(
mπθ

ψ

)
dθ

=

∫ ψ

0

[
1

r

∂

∂r

(
r
∂

∂r
bnm(s, r)sin

2

(
mπθ

ψ

))
− m2π2

r2ψ2

(
bnm(s, r)sin

2

(
mπθ

ψ

))]
dθ

+
2

Hrα
δ(r − r0)e

−st0sin
(nπz0
H

)∫ ψ

0

δ(θ − θ0)sin

(
mπθ

ψ

)
dθ

Note that
∫ ψ
0
sin2

(
mπθ
ψ

)
dθ = π/9. Integrating the delta function over the θ interval yields the

function of θ evaluated at θ0.

(
s

α
+
n2π2

H2

)
bnm(s, r)

π

9

=

[
1

r

∂

∂r

(
r
∂

∂r
bnm(s, r)

)
− m2π2

r2ψ2
(bnm(s, r))

]
π

9

+
2

Hrα
δ(r − r0)e

−st0sin
(nπz0
H

)
sin

(
mπθ0
ψ

)
Simplifying (

s

α
+
n2π2

H2

)
bnm(s, r)

=

[
1

r

∂

∂r

(
r
∂

∂r
bnm(s, r)

)
− m2π2

r2ψ2
(bnm(s, r))

]
+

18

πHrα
δ(r − r0)e

−st0sin
(nπz0
H

)
sin

(
mπθ0
ψ

)
The expansions for z and θ are now complete. Recognize that the middle term is in the form of a
Bessel differential equation, which can be represented in the following form:[

∂

∂r

(
r
∂

∂r
Jν(kr)

)
− m2

r
(Jν(kr))

]
= −k2rJν(kr)

Where
k are the eigenvalues of the Bessel function
ν is the order of the Bessel function

In this specific case, ν = mπ
ψ

. Thus, a Bessel series expansion is proposed

bnm(s, r) =
∞∑
l=1

cnml(s)Jmπ
ψ
(kmlr)

Where
Jmπ

ψ
is the (mπ

ψ
)th order Bessel function of the first kind

kmla is the lth zero of Jmπ
ψ

7



As before, substitute into the differential equation.(
s

α
+
n2π2

H2

) ∞∑
l=1

cnml(s)Jmπ
ψ
(kmlr)

=
1

r

[
∂

∂r

(
r
∂

∂r

∞∑
l=1

cnml(s)Jmπ
ψ
(kmlr)

)
− m2π2

rψ2

(
∞∑
l=1

cnml(s)Jmπ
ψ
(kmlr)

)]

+
18

πHrα
δ(r − r0)e

−st0sin
(nπz0
H

)
sin

(
mπθ0
ψ

)
Rearranging, (

s

α
+
n2π2

H2

) ∞∑
l=1

cnml(s)Jmπ
ψ
(kmlr)

=
∞∑
l=1

cnml(s)
1

r

[
∂

∂r

(
r
∂

∂r
Jmπ

ψ
(kmlr)

)
− m2π2

rψ2

(
Jmπ

ψ
(kmlr)

)]
+

18

πHrα
δ(r − r0)e

−st0sin
(nπz0
H

)
sin

(
mπθ0
ψ

)
Once again, recognize that the middle term is in the form of a Bessel differential equation, which
can be represented by −k2mlrJmπψ (kmlr). This can be proved by directly substituting the series
expansion and evaluating the r derivatives of the Bessel function. Multiply everything by r and
then substitute. (

s

α
+
n2π2

H2

) ∞∑
l=1

cnml(s)Jmπ
ψ
(kmlr) r

= −
∞∑
l=1

cnml(s)k
2
mlJmπψ (kmlr) r

+
18

πHrα
δ(r − r0)e

−st0sin
(nπz0
H

)
sin

(
mπθ0
ψ

)
r

Don’t cancel the common factor of r, as later we will want to use it as part of a convenient definition
for Sturm-Liouville orthogonality of Bessel functions. Next, multiply by a particular eigenfunction,
Jmπ

ψ
(kml′r) and integrate over the domain of r.

∫ a

0

(
s

α
+
n2π2

H2

) ∞∑
l=1

cnml(s)Jmπ
ψ
(kmlr) Jmπ

ψ
(kml′r) rdr

= −
∫ a

0

∞∑
l=1

cnml(s)k
2
mlJmπψ (kmlr) Jmπ

ψ
(kml′r) rdr

+

∫ a

0

18

πHrα
δ(r − r0)e

−st0sin
(nπz0
H

)
sin

(
mπθ0
ψ

)
Jmπ

ψ
(kml′r) rdr
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Rearranging,
∞∑
l=1

cnml(s)

(
s

α
+
n2π2

H2

)∫ a

0

Jmπ/ψ (kmlr) Jmπ/ψ (kml′r) rdr

=
∞∑
l=1

cnml(s)k
2
ml −

∫ a

0

Jmπ/ψ (kmlr) Jmπ/ψ (kml′r) rdr

+sin
(nπz0
H

)
sin

(
mπθ0
ψ

)
e−st0

18

πHα

∫ a

0

δ(r − r0)

r
Jmπ/ψ (kml′r) rdr

Now cancel the factor of r that is in both the numerator and denominator of the source term.
Recognize that Sturm-Liouville orthogonality can be applied. This relevant property is∫ a

0

Jν (kmlr) Jν (kml′r) rdr =

{
1
2
[aJν+1(kmla)]

2 l = l′

0 l ̸= l′

Also, recognize that the delta function in the source term returns the Bessel function, but evaluated
at r0. Applying orthogonality and the delta function property

cnml(s)

(
s

α
+
n2π2

H2

)
1

2

[
aJmπ

ψ
+1(kmla)

]2
= −cnml(s)k2ml

1

2

[
aJmπ

ψ
+1(kmla)

]2
+sin

(nπz0
H

)
sin

(
mπθ0
ψ

)
e−st0

18

πHα
Jmπ

ψ
(kmlr0)

Rearranging,

cnml(s)

(
s

α
+
n2π2

H2

)
= −cnml(s)k2ml + sin

(nπz0
H

)
sin

(
mπθ0
ψ

)
e−st0

36[
aJmπ

ψ
+1(kmla)

]2
πHα

Jmπ
ψ
(kmlr0)

Simplifying,

cnml(s)

(
s

α
+
n2π2

H2
+ k2ml

)
= sin

(nπz0
H

)
sin

(
mπθ0
ψ

)
e−st0

36

a2J2
mπ
ψ

+1(kmla)πHα
Jmπ

ψ
(kmlr0)

Rearranging again,

cnml(s)

(
s+

αn2π2

H2
+ αk2ml

)
= e−st0sin

(nπz0
H

)
sin

(
mπθ0
ψ

)
36

a2J2
mπ
ψ

+1(kmla)πH
Jmπ

ψ
(kmlr0)

Solving for cnml,

cnml(s) =
e−st0(

s+ αn2π2

H2 + αk2ml
)sin(nπz0

H

)
sin

(
mπθ0
ψ

)
36

a2J2
mπ
ψ

+1(kmla)πH
Jmπ

ψ
(kmlr0)
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Now that cnml has been found, the solution can be put together from the expanded series. First,
show bnm.

bnm(s, r) =
∞∑
l=1

Jmπ
ψ
(kmlr)

36

πHa2J2
mπ
ψ

+1 (kmlr0) (kmla)
sin
(nπz0
H

)
sin

(
mπθ0
ψ

)
Jmπ

ψ
(kmlr0)

e−st0

s+ αn
2π2

H2 + αk2ml

Second, put together an.

an(s, r, θ) =
∞∑
m=1

∞∑
l=1

sin

(
mπθ

ψ

)
Jmπ

ψ
(kmlr)

36

πHa2J2
mπ
ψ

+1 (kmla)
sin
(nπz0
H

)
sin

(
mπθ0
ψ

)
Jmπ

ψ
(kmlr0)

e−st0

s+ αn
2π2

H2 + αk2ml

Third, put together Gsrc.

Gsrc(s, r, θ, z) =
∞∑
n=1

∞∑
m=1

∞∑
l=1

sin
(nπz
H

)
sin

(
mπθ

ψ

)
Jmπ

ψ
(kmlr)

36

πHa2J2
mπ
ψ

+1 (kmla)

sin
(nπz0
H

)
sin

(
mπθ0
ψ

)
Jmπ

ψ
(kmlr0)

e−st0

s+ αn
2π2

H2 + αk2ml

Putting like functions next to each other,

Gsrc(s, r, θ, z) =
∞∑
n=1

∞∑
m=1

∞∑
l=1

sin
(nπz
H

)
sin
(nπz0
H

)
sin

(
mπθ

ψ

)
sin

(
mπθ0
ψ

)
Jmπ

ψ
(kmlr)Jmπ

ψ
(kmlr0)

36

πHa2J2
mπ
ψ

+1 (kmla)

e−st0

s+ αn
2π2

H2 + αk2ml

Recall that Gsrc was the Laplace transform of gsrc. This must be undone by inverting the previous
statement. At this point, the green’s function for a source term has been obtained.

gsrc(t, r, θ, z) =
∞∑
n=1

∞∑
m=1

∞∑
l=1

sin
(nπz
H

)
sin
(nπz0
H

)
sin

(
mπθ

ψ

)
sin

(
mπθ0
ψ

)
Jmπ

ψ
(kmlr)Jmπ

ψ
(kmlr0)

36

πHa2J2
mπ
ψ

+1 (kmla)
e
−α(t−t0)

(
n2π2

H2 +k2ml

)
H(t− t0)

Where
H is the Heaviside function

In the next section, this function will be used to solve the original problem.
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Remark 3 (Mellin inversion). The Mellin formula was used to invert the Laplace transform using
the residue theorem and a contour in the complex plane. The first step is to rearrange the function
to be inverted, giving

Gsrc(s, r, θ, z) =
Qe−st0

P + s

Where
Q =

∑∞
n=1

∑∞
m=1

∑∞
l=1 sin

(
nπz
H

)
sin
(
nπz0
H

)
sin
(
mπθ
ψ

)
sin
(
mπθ0
ψ

)
Jmπ

ψ
(kmlr)Jmπ

ψ
(kmlr0)

36
πHa2J2

mπ
ψ

+1
(kmla)

P = αn
2π2

H2 + αk2ml

Next, invoke the Mellin formula:

f(t) = L−1F (s) =
1

2πi

∫ γ+i∞

γ−i∞

Qe−st0

P + s
estds

The next step is to draw a contour in the input space of the function.

R(z)

I(z)

I

T

B

Pole at 
z = -P

r

CR

The integral that is desired is a vertical line from −∞ to ∞ at an x value of γ, which is chosen so
that all of the poles of the function lie to the left. The only pole has multiplicity 1 and is located
at s = −P . To use the residue theorem, a closed contour must be used. Close left, yielding three
more segments that must be evaluated, T , CR, and B. The residue theorem gives∮

= 2πi
∑

res = I + T + CR +B

11



Analyze T and B, using the change of variables z = x+ ir or z = x− ir. Argue that both approach
a horizontal line as r approaches ∞. Both go to zero.

T = lim
r→∞

Q

∫ 0

γ

e−st0est

P + s
dx = lim

r→∞
Q

∫ 0

γ

e−(x+ir)t0e(x+ir)t

P + (x+ ir)
dx = 0

B = lim
r→∞

Q

∫ γ

0

e−st0est

P + s
dx = lim

r→∞
Q

∫ γ

0

e−(x−ir)t0e(x−ir)t

P + (x− ir)
dx = 0

Analyze CR using a different change of variables: z = reiθ.

CR = lim
r→∞

Q

∫ 3π/2+ϵ

π/2−ϵ

e−re
iθt0ere

iθt

P + reiθ
rieiθdθ = 0

Since the arc and line segments are zero, the integral that was desired, I, can be found by

2πi
∑

res = I

The residue at s = −P can be found using a simple formula that applies to functions that can be
represented by F = X

Y
, and have X(s) ̸= 0 and Y (s) = 0.

res(a) =
X(s)

Y ′(s)
=
Qe−−Pt0e−Pt

1
=
QeP (t0−t)

1
= Qe−P (t−t0)

Using the residue theorem

2πi
∑

res = 2πires(a) = 2πiQe−P (t−t0)

Returning to the Mellin theorem

f(t) =
1

2πi

∫ γ+i∞

γ−i∞

Qe−st0

P + s
estds =

1

2πi
2πiQe−P (t−t0)

In order to enforce that t must be greater than t0, add the Heaviside step function.

f(t) = Qe−P (t−t0)H(t− t0)

Substituting back the definitions of Q and P yields the inverted statement shown previously.

f(t) =
∞∑
n=1

∞∑
m=1

∞∑
l=1

sin
(nπz
H

)
sin
(nπz0
H

)
sin

(
mπθ

ψ

)
sin

(
mπθ0
ψ

)
Jmπ

ψ
(kmlr)Jmπ

ψ
(kmlr0)

36

πHa2J2
mπ
ψ

+1 (kmla)
e

(
−αn

2π2

H2 +αk2ml

)
(t−t0)H(t− t0)
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2.2 Using the Green’s function for the particular problem
The green’s function must respect the boundary conditions of the original problem. After the ini-
tial change of variables, all boundary conditions were homogeneous except for the pie-ice cream
boundary and initial temperature. For the boundary condition, −α times the normal gradient of
the Green’s function with respect to the inhomogeneous variable, z0, and evaluated at the location
of the inhomogeneity, z0 = 0, will satisfy the BC. This integral must also contain the value of the
inhomogeneous condition, and must then be integrated over the other variables. Let this part of
the solution be u1.

u1(t, r, θ) =

∫ a

0

∫ ψ

0

∫ t∞

0

−α∂gsrc
∂z0

∣∣∣∣∣
z0

uBC(r0, θ0, t0)dt0r0dθ0dr0

However, the problem also had an inhomogeneous initial condition. As luck would have it, the
Green’s function for an initial condition is the Green’s function for the source term, evaluated at
t0 = 0, multiplied by the value of the initial condition, and integrated over the domain. Call this
part of the solution u2.

u2(r, θ, z) =

∫ a

0

∫ ψ

0

∫ H

0

gsrc

∣∣∣∣∣
t0=0

uIC(r0, θ0, z0)dz0r0dθ0dr0

Because of superposition, the two solutions can be added together to obtain a solution for the overall
temperature profile.

u(t, r, θ, z) = u1(t, r, θ) + u2(r, θ, z)

First, evaluate u1. Recognize that the boundary condition temperature is constant with respect to
all of the variables. Also recognize that since the normal gradient points out of the object, at the
bottom of the pie where this boundary condition is relevant this is in the −z direction, canceling
the negative signs.

u1(t, r, θ) = uBC

∫ a

0

∫ ψ

0

∫ t

0

α
∞∑
n=1

∞∑
m=1

∞∑
l=1

sin
(nπz
H

)
cos

(
nπ(0)

H

)
nπ

H
sin

(
mπθ

ψ

)
sin

(
mπθ0
ψ

)
Jmπ

ψ
(kmlr)Jmπ

ψ
(kmlr0)

36

πHa2J2
mπ
ψ

+1 (kmla)
e
−α(t−t0)

(
n2π2

H2 +k2ml

)
H(t− t0)dt0r0dθ0dr0

Integrating the heaviside function changes the limits of the time integral based on the point where
it turns on.

u1(t, r, θ) = uBC

∫ a

0

∫ ψ

0

∫ t

t0

∞∑
n=1

∞∑
m=1

∞∑
l=1

sin
(nπz
H

)
sin

(
mπθ

ψ

)
sin

(
mπθ0
ψ

)
Jmπ

ψ
(kmlr)Jmπ

ψ
(kmlr0)

36αn

H2a2J2
mπ
ψ

+1 (kmla)
e
−α(t−t0)

(
n2π2

H2 +k2ml

)
dt0r0dθ0dr0

Next, the exponential function of time must be integrated.

u1(t, r, θ) = uBC
36α

H2a2

∫ a

0

∫ ψ

0

∞∑
n=1

∞∑
m=1

∞∑
l=1

sin
(nπz
H

)
sin

(
mπθ

ψ

)
sin

(
mπθ0
ψ

)

Jmπ
ψ
(kmlr)Jmπ

ψ
(kmlr0)

n

J2
mπ
ψ

+1 (kmla)

e−α(t−t0)(n2π2H2 +k2ml

)
α
(
n2π2

H2 + k2ml
)
 ∣∣∣∣∣

t

t0=0

r0dθ0dr0
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Simplifying,

u1(t, r, θ) = uBC
36α

H2a2

∫ a

0

∫ ψ

0

∞∑
n=1

∞∑
m=1

∞∑
l=1

sin
(nπz
H

)
sin

(
mπθ

ψ

)
sin

(
mπθ0
ψ

)

Jmπ
ψ
(kmlr)Jmπ

ψ
(kmlr0)

n

J2
mπ
ψ

+1 (kmla)

1− e
−αt

(
n2π2

H2 +k2ml

)
α
(
n2π2

H2 + k2ml
)
 r0dθ0dr0

Evaluate the integral with respect to θ0.

u1(t, r, θ) = uBC
36α

H2a2

∫ a

0

∞∑
n=1

∞∑
m=1

∞∑
l=1

sin
(nπz
H

)
sin

(
mπθ

ψ

)
Jmπ

ψ
(kmlr)Jmπ

ψ
(kmlr0)

n

J2
mπ
ψ

+1 (kmla)

1− e
−αt

(
n2π2

H2 +k2ml

)
α
(
n2π2

H2 + k2ml
)
[−cos(mπθ0

ψ

)
ψ

mπ

] ∣∣∣∣∣
ψ

0

r0dr0

Note that

−cos
(
mπθ0
ψ

)
ψ

mπ

∣∣∣∣∣
ψ

0

=
−ψ
mπ

[cos (mπ)− cos (0)] =
−ψ
π

((−1)m − 1)

m

Simplifying,

u1(t, r, θ) = uBC
−36ψα

πH2a2

∫ a

0

∞∑
n=1

∞∑
m=1

∞∑
l=1

n ((−1)m − 1)

m
sin
(nπz
H

)
sin

(
mπθ

ψ

)
Jmπ

ψ
(kmlr)Jmπ

ψ
(kmlr0)

1

J2
mπ
ψ

+1 (kmla)

1− e
−αt

(
n2π2

H2 +k2ml

)
α
(
n2π2

H2 + k2ml
)
 r0dr0

Rearranging,

u1(t, r, θ) = uBC
−36ψα

πH2a2

∞∑
n=1

∞∑
m=1

∞∑
l=1

n ((−1)m − 1)

m
sin
(nπz
H

)
sin

(
mπθ

ψ

)
Jmπ

ψ
(kmlr)

1

J2
mπ
ψ

+1 (kmla)1− e
−αt

(
n2π2

H2 +k2ml

)
α
(
n2π2

H2 + k2ml
)
∫ a

0

Jmπ
ψ
(kmlr0) r0dr0

Recognize that the integral of the Bessel function in r0 cannot be expressed in closed form with easy
methods. Thus, it is replaced with a symbol, ξml. These integrals will be evaluated numerically
and tabulated. When evaluating the solution, the necessary amount will be called by querying the
table.

u1(t, r, θ) = uBC
−36ψα

πH2a2

∞∑
n=1

∞∑
m=1

∞∑
l=1

n ((−1)m − 1)

m
sin
(nπz
H

)
sin

(
mπθ

ψ

)
Jmπ

ψ
(kmlr)

1

J2
mπ
ψ

+1 (kmla)1− e
−αt

(
n2π2

H2 +k2ml

)
α
(
n2π2

H2 + k2ml
)
 ξml
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The function that respects the BC has been found. The next step is to evaluate the function that
respects the initial condition.

u2(r, θ, z) =

∫ a

0

∫ ψ

0

∫ H

0

∞∑
n=1

∞∑
m=1

∞∑
l=1

sin
(nπz
H

)
sin
(nπz0
H

)
sin

(
mπθ

ψ

)
sin

(
mπθ0
ψ

)
Jmπ

ψ
(kmlr)Jmπ

ψ
(kmlr0)

36

πHa2J2
mπ
ψ

+1 (kmla)
e
−α(t−(0))

(
n2π2

H2 +k2ml

)
H(t− (0))uIC(r0, θ0, z0)dz0r0dθ0dr0

For positive t, the Heaviside function is equal to 1. As it was for the boundary condition, the initial
condition is not a function of the independent variables so it can be taken out of the integrals.
Evaluate the integral in z0.

u2(r, θ, z) = uIC
36

πHa2

∫ a

0

∫ ψ

0

∞∑
n=1

∞∑
m=1

∞∑
l=1

sin
(nπz
H

)
sin

(
mπθ

ψ

)
sin

(
mπθ0
ψ

)

Jmπ
ψ
(kmlr)Jmπ

ψ
(kmlr0)

1

J2
mπ
ψ

+1 (kmla)
e
−αt

(
n2π2

H2 +k2ml

) [
−cos

(nπz0
H

) H

nπ

] ∣∣∣∣∣
H

0

r0dθ0dr0

Simplifying,

u2(r, θ, z) = uIC
−36

π2a2

∫ a

0

∫ ψ

0

∞∑
n=1

∞∑
m=1

∞∑
l=1

((−1)n − 1)

n
sin
(nπz
H

)
sin

(
mπθ

ψ

)
sin

(
mπθ0
ψ

)
Jmπ

ψ
(kmlr)Jmπ

ψ
(kmlr0)

1

J2
mπ
ψ

+1 (kmla)
e
−αt

(
n2π2

H2 +k2ml

)
r0dθ0dr0

Evaluating the integral in θ0,

u2(r, θ, z) = uIC
−36

π2a2

∫ a

0

∞∑
n=1

∞∑
m=1

∞∑
l=1

((−1)n − 1)

n
sin
(nπz
H

)
sin

(
mπθ

ψ

)

Jmπ
ψ
(kmlr)Jmπ

ψ
(kmlr0)

1

J2
mπ
ψ

+1 (kmla)
e
−αt

(
n2π2

H2 +k2ml

) [
−cos

(
mπθ0
ψ

)
ψ

mπ

] ∣∣∣∣∣
ψ

0

r0dr0

Simplifying,

u2(r, θ, z) = uIC
36ψ

π3a2

∫ a

0

∞∑
n=1

∞∑
m=1

∞∑
l=1

((−1)n − 1)

n

((−1)m − 1)

m
sin
(nπz
H

)
sin

(
mπθ

ψ

)
Jmπ

ψ
(kmlr)Jmπ

ψ
(kmlr0)

1

J2
mπ
ψ

+1 (kmla)
e
−αt

(
n2π2

H2 +k2ml

)
r0dr0

Rearrange to show clearly that the integral of the Bessel function over r0 gives the same issue as
before.

u2(r, θ, z) = uIC
36ψ

π3a2

∞∑
n=1

∞∑
m=1

∞∑
l=1

((−1)n − 1)

n

((−1)m − 1)

m
sin
(nπz
H

)
sin

(
mπθ

ψ

)
Jmπ

ψ
(kmlr)

1

J2
mπ
ψ

+1 (kmla)
e
−αt

(
n2π2

H2 +k2ml

) ∫ a

0

Jmπ
ψ
(kmlr0) r0dr0
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Once again, replace it with ξml.

u2(r, θ, z) = uIC
36ψ

π3a2

∞∑
n=1

∞∑
m=1

∞∑
l=1

((−1)n − 1)

n

((−1)m − 1)

m
sin
(nπz
H

)
sin

(
mπθ

ψ

)
Jmπ

ψ
(kmlr)

1

J2
mπ
ψ

+1 (kmla)
e
−αt

(
n2π2

H2 +k2ml

)
ξml

Now, the overall solution can be put together u(t, r, θ, z) = u1(t, r, θ) + u2(r, θ, z).

u(t, r, θ, z) = uBC
−36ψα

πH2a2

∞∑
n=1

∞∑
m=1

∞∑
l=1

n ((−1)m − 1)

m
sin
(nπz
H

)
sin

(
mπθ

ψ

)

Jmπ
ψ
(kmlr)

1

J2
mπ
ψ

+1 (kmla)

1− e
−αt

(
n2π2

H2 +k2ml

)
α
(
n2π2

H2 + k2ml
)
 ξml

+uIC
36ψ

π3a2

∞∑
n=1

∞∑
m=1

∞∑
l=1

((−1)n − 1)

n

((−1)m − 1)

m
sin
(nπz
H

)
sin

(
mπθ

ψ

)
Jmπ

ψ
(kmlr)

1

J2
mπ
ψ

+1 (kmla)
e
−αt

(
n2π2

H2 +k2ml

)
ξml

Some simplification yields a statement of the analytic solution.

u(t, r, θ, z) =
∞∑
n=1

∞∑
m=1

∞∑
l=1

sin
(nπz
H

)
sin

(
mπθ

ψ

)
Jmπ

ψ
(kmlr)

36ψξml
πa2J2

mπ
ψ

+1 (kmla)

((−1)m − 1)

m[
−uBCnα
H2

1− e
−αt

(
n2π2

H2 +k2ml

)
α
(
n2π2

H2 + k2ml
)
+

uIC
π2

((−1)n − 1)

n
e
−αt

(
n2π2

H2 +k2ml

)]
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3 Evaluating the average temperature
The next step is to evaluate the average value of temperature on a volume basis, Tave(t). This will
be done using

Tave(t) =
uvol(t)

Vpie
=

∫ a
0

∫ ψ
0

∫ H
0
u(t, r, θ, z)dzrdθdr

Vpie
+ 21.1

Start by working on the numerator. Substituting the analytic solution into the volume integral,

uvol(t) =

∫ a

0

∫ ψ

0

∫ H

0

∞∑
n=1

∞∑
m=1

∞∑
l=1

sin
(nπz
H

)
sin

(
mπθ

ψ

)
Jmπ

ψ
(kmlr)

ξml
J2
mπ
ψ

+1 (kmla)

[
uBC

−36ψα

πH2a2
n ((−1)m − 1)

m

1− e
−αt

(
n2π2

H2 +k2ml

)
α
(
n2π2

H2 + k2ml
)


+uIC
36ψ

π3a2
((−1)n − 1)

n

((−1)m − 1)

m
e
−αt

(
n2π2

H2 +k2ml

)]
dzrdθdr

Rearranging,

uvol(t) =
∞∑
n=1

∞∑
m=1

∞∑
l=1

ξml
J2
mπ
ψ

+1 (kmla)

[
uBC

−36ψα

πH2a2
n ((−1)m − 1)

m

1− e
−αt

(
n2π2

H2 +k2ml

)
α
(
n2π2

H2 + k2ml
)


+uIC
36ψ

π3a2
((−1)n − 1)

n

((−1)m − 1)

m
e
−αt

(
n2π2

H2 +k2ml

)]
∫ a

0

∫ ψ

0

∫ H

0

sin
(nπz
H

)
sin

(
mπθ

ψ

)
Jmπ

ψ
(kmlr)dzrdθdr

Evaluating the integral over z.

uvol(t) =
∞∑
n=1

∞∑
m=1

∞∑
l=1

ξml
J2
mπ
ψ

+1 (kmla)

[
uBC

−36ψα

πH2a2
n ((−1)m − 1)

m

1− e
−αt

(
n2π2

H2 +k2ml

)
α
(
n2π2

H2 + k2ml
)


+uIC
36ψ

π3a2
((−1)n − 1)

n

((−1)m − 1)

m
e
−αt

(
n2π2

H2 +k2ml

)]
∫ a

0

∫ ψ

0

sin

(
mπθ

ψ

)
Jmπ

ψ
(kmlr)

[
−cos

(nπz
H

) H

nπ

] ∣∣∣∣∣
H

0

rdθdr

Simplifying,

uvol(t) =
∞∑
n=1

∞∑
m=1

∞∑
l=1

ξml
J2
mπ
ψ

+1 (kmla)

[
uBC

−36ψα

πH2a2
n ((−1)m − 1)

m

1− e
−αt

(
n2π2

H2 +k2ml

)
α
(
n2π2

H2 + k2ml
)


+uIC
36ψ

π3a2
((−1)n − 1)

n

((−1)m − 1)

m
e
−αt

(
n2π2

H2 +k2ml

)]
−H
π

((−1)n − 1)

n

∫ a

0

∫ ψ

0

sin

(
mπθ

ψ

)
Jmπ

ψ
(kmlr)rdθdr
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Evaluating the integral over θ,

uvol(t) =
∞∑
n=1

∞∑
m=1

∞∑
l=1

ξml
J2
mπ
ψ

+1 (kmla)

[
uBC

−36ψα

πH2a2
n ((−1)m − 1)

m

1− e
−αt

(
n2π2

H2 +k2ml

)
α
(
n2π2

H2 + k2ml
)


+uIC
36ψ

π3a2
((−1)n − 1)

n

((−1)m − 1)

m
e
−αt

(
n2π2

H2 +k2ml

)]
−H
π

((−1)n − 1)

n

∫ a

0

Jmπ
ψ
(kmlr)

[
−cos

(
mπθ

ψ

)]
ψ

mπ

∣∣∣∣∣
ψ

0

dθrdr

Simplifying,

uvol(t) =
∞∑
n=1

∞∑
m=1

∞∑
l=1

ξml
J2
mπ
ψ

+1 (kmla)

[
uBC

−36ψα

πH2a2
n ((−1)m − 1)

m

1− e
−αt

(
n2π2

H2 +k2ml

)
α
(
n2π2

H2 + k2ml
)


+uIC
36ψ

π3a2
((−1)n − 1)

n

((−1)m − 1)

m
e
−αt

(
n2π2

H2 +k2ml

)]
−H
π

((−1)n − 1)

n

−ψ
π

((−1)m − 1)

m

∫ a

0

Jmπ
ψ
(kmlr)rdr

Once again, the interesting integral of the Bessel function has been obtained. It is in the same form
as before, so once again it is replaced using ξml, giving

uvol(t) =
∞∑
n=1

∞∑
m=1

∞∑
l=1

ξ2ml
J2
mπ
ψ

+1 (kmla)

Hψ

π2

((−1)n − 1)

n

((−1)m − 1)

m[
uBC

−36ψα

πH2a2
n ((−1)m − 1)

m

1− e
−αt

(
n2π2

H2 +k2ml

)
α
(
n2π2

H2 + k2ml
)
+ uIC

36ψ

π3a2
((−1)n − 1)

n

((−1)m − 1)

m
e
−αt

(
n2π2

H2 +k2ml

)]

Simplifying,

uvol(t) =
∞∑
n=1

∞∑
m=1

∞∑
l=1

36Hψ2

π3a2
ξ2ml

J2
mπ
ψ

+1 (kmla)

((−1)n − 1)

n

(
((−1)m − 1)

m

)2

[
uBC

−αn
H2

1− e
−αt

(
n2π2

H2 +k2ml

)
α
(
n2π2

H2 + k2ml
)
+ uIC

1

π2

((−1)n − 1)

n
e
−αt

(
n2π2

H2 +k2ml

)]

This is the volume integral of the dependent variable. However, to find the volume average, the

18



nominal volume of the pie must be evaluated. This is done using

Vpie =

∫ a

0

∫ ψ

0

∫ H

0

dzrdθdr

Vpie =

∫ a

0

∫ ψ

0

[
z

∣∣∣∣H
0

]
rdθdr

Vpie =

∫ a

0

∫ ψ

0

Hrdθdr

Vpie = H

∫ a

0

[
θ

∣∣∣∣ψ
0

]
rdr

Vpie = Hψ

∫ a

0

rdr

Vpie = Hψ

[
r2/2

∣∣∣∣a
0

]
Vpie = Hψa2/2

Now, the original shift can be undone to obtain temperature, T , from the dependent variable, u.
Recall that T = u+ 21.1. On the same step, the volume-basis average temperature is obtained by
dividing the volume integral of the temperature by the volume of the pie.

Tave(t) =
uvol(t)

Vpie
+ 21.1

The analytic solution for the average internal temperature is thus

Tave(t) = 21.1 +
∞∑
n=1

∞∑
m=1

∞∑
l=1

36Hψ2

π3a2
ξ2ml

J2
mπ
ψ

+1 (kmla)

((−1)n − 1)

n

(
((−1)m − 1)

m

)2

[
uBC

−αn
H2

1− e
−αt

(
n2π2

H2 +k2ml

)
α
(
n2π2

H2 + k2ml
)
+ uIC

1

π2

((−1)n − 1)

n
e
−αt

(
n2π2

H2 +k2ml

)]
/
(
Hψa2/2

)
Where
H = pie height = 0.0381m
ψ = pie angle = 40°= 2π/9
a = pie radius = 0.127 m
α = thermal diffusivity = 1.34x10−7 ± 0.03m

2

s
[2]

uBC = constant temperature on the pie-ice cream boundary = -21.1°C
uIC = initial temperature of the pie = 169.6°C
Jmπ

ψ
= Bessel function of the first kind, of order mπ

ψ

kml = lth zero of Bessel function of the first kind, of order m
ξml =

∫ a
0
Jmπ

ψ
(kmlr) rdr = Bessel function of the first kind, of order mπ

ψ
, integrated from 0 to a

The next step is to evaluate the analytic solution.
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4 Implementing the solution
The objective was to find the time for Tave to reach 29.4°C, or 85°F . The solution was evaluated
using MATLAB. Since I have a date later, I don’t have time to include all infinity of the terms in
the series solution. Thus, this step is where the solution becomes a numerical approximation.

1 %% ECH259_clay_swackhamer_project_solution
2 %2017-12-12
3 %Notes: Runs on click.
4 %Evaluates solution and makes a quick plot
5 %more plots are in
6 %ECH259_clay_swackhamer_plot_code
7
8 tic, clc, clear, close all
9 fontname = 'CMU Serif'; %to match tex

10 set(0,'defaultaxesfontname',fontname);
11 set(0,'defaulttextfontname',fontname);
12 map = lines; %colors
13
14 %% Constants
15 H = 0.0381; %height, m
16 psi = 2*pi/9; %angle, rad
17 a = 0.127; %radius, m
18 Tbc = -21.1; %boundary temp, C
19 Tic = 169.5; %initial temp, C
20 alpha = 1.34e-7; %diffusivity, m^2/s
21 Vpie = (H*psi*a^2/2); %pie volume, m^3
22
23 %% Numerically evaluate zeros of the bessel function
24 tableSize = 50; %can't keep more terms than this in the series
25 k = zeros(tableSize, tableSize); %preallocate
26 for m = 1:1:tableSize
27 roots = besselzero(m*pi/psi, tableSize, 1); %(o, nzeros, J or Y)
28 k(m,:) = roots; %(order, zeros)
29 %credit for besselzero is [Greg von Winckel, 2005,
30 %https://www.mathworks.com/matlabcentral/fileexchange/
31 %6794-bessel-function-zeros?focused=5058085&tab=function]
32 end
33 k = k/a; %eigenvalues are k, roots are kml*a
34
35 %% Numerically evaluate zeta integrals
36 %These are the Bessel integrals that can't be done easily by hand
37 zeta = zeros(tableSize,tableSize);
38 for m = 1:1:tableSize
39 nu = m*pi/psi; %order of bessel
40 for el = 1:1:tableSize
41 bfun = @(x)besselj(nu,x*k(m,el)).*x;
42 zeta(m,el) = integral(bfun,0,a); %order, integral
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43 end
44 end
45
46 %% Evaluate temperature, keeping different numbers of terms
47 %Set up and preallocate
48 t85 = nan(1,50);
49 NtermsRecord = nan(1,50);
50 j = 1;
51 Nterms = 1; %terms to keep in solution
52 t = linspace(0, 3600, 60); %time, full hour on one min intervals
53
54 while Nterms < 9
55 T = zeros(length(t),1); %preallocate temp for SN
56 for i = 1:1:length(t)
57 u = 0; %clear u after each time point
58 for n = 1:1:Nterms
59 for m =1:1:Nterms
60 for el = 1:1:Nterms
61
62 coef = (36*H*psi^2)/(pi^3*a^2) ...
63 * (zeta(m,el))^2/(besselj((m*pi/psi+1), ...
64 k(m,el)*a))^2 ...
65 * ((-1)^n-1)/n * (((-1)^m-1)/m)^2;
66
67 bc = Tbc*-n/H^2 * (1-exp(-alpha*t(i) ...
68 *(n^2*pi^2/H^2+k(m,el)^2))) ...
69 /((n^2*pi^2/H^2+k(m,el)^2));
70
71 ic = Tic/pi^2 * ((-1)^n-1)/n ...
72 *exp(-alpha*t(i)*(n^2*pi^2/H^2+k(m,el)^2));
73
74 u = u + coef*(bc+ic);
75 end
76 end
77 end
78 T(i) = u/Vpie + 21.1; %volume ave temp in celsius
79 end
80
81 %Find t85
82 Tf = T*9/5+32; %convert to F
83 [~, t85ind] = min(abs(Tf-85)); %find t85 index
84 t85(j) = t(t85ind)/60; %find t85 value
85
86 %Find Richardson error
87 NtermsRecord(j) = Nterms; %number of terms
88
89 j = j + 1;
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90 Nterms = Nterms *2;
91 end
92
93 %Clean up results
94 t85 = t85(~isnan(t85))
95 NtermsRecord = NtermsRecord(~isnan(NtermsRecord))
96
97 %% Quick plot for last series
98 plot(t, Tf)
99 title('Quick check: Temp (F) vs Time (s)')

100 toc
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5 Results

5.1 Bessel function zeros
Zeros of the Bessel functions were found using Greg von Winckel’s besselzero.m [3], which uses
Halley’s method. For details on Halley’s method please see [4]. An example plot is shown below,
with the first 25 zeros of the Bessel function of the first kind, of order 18. These zeros are the values
kmla in the series solution.

5.2 Bessel function integrals
The integrals that were labeled ξml were evaluated numerically using function integrate in MAT-
LAB. A table was generated and saved, and entries were called when building the solution. The
code shown in this report is designed to run everything on one click, so the table is left in the
workspace. The first nine ξml integrals are visualized below. Numbers in the title are m, l, and
represent the following integral:

∫ a
0
Jmπ

ψ
(kmlr) rdr.
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5.3 Cooling time
The time to cool down was evaluated by finding the temperature value closest to 85°F, and then
taking the corresponding time value. All cooling profiles were evaluated on 1000 evenly spaced
time steps between time 0 and one hour. This temperature profile has an exponentially decaying
characteristic, starting at the initial, oven temperature and eventually settling to an value between
the ambient room temperature and the ice cream temperature.

A plot of cooling times for solutions with increasing number of terms is shown below. Results
suggest that the series is converging, and that there are diminishing returns to keeping more terms
as N becomes large.
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5.4 Convergence analysis
The error introduced by truncating the infinite series solution was estimated using the Richardson
approach. This involves assuming a model for the difference between the true value of an infinite
sum and its truncation with varying numbers of terms. The error for a series with N terms is
defined as

EN = t85N − t85∞

Where
EN = error for a truncated series with N terms
t85N = time to reach 85°, as calculated using the series with N terms
t85∞ = true time to reach 85°

The model is given by

EN = CNP

Where
C, P are constants

Estimates for C and P can be obtained from evaluating specific series.

t85N − t85∞ = C(N)P

t852N − t85∞ = C(2N)P

Subtracting these equations yields

t852N − t85N = C(2N)P − C(N)P = CNP (2P − 1)

25



Repeating the steps for two another series yields

t852N − t85∞ = C(2N)P

t854N − t85∞ = C(4N)P

t854N − t852N = C(4N)P − C(2N)P = CNP2P (2P − 1)

By dividing the results obtained above, an estimate for P can be obtained.

t854N − t852N
t852N − t85N

=
CNP2P (2P − 1)

CNP (2P − 1)
= 2P

ln(2P ) = ln

(
t854N − t852N
t852N − t85N

)
Pln(2) = ln

(
t854N − t852N
t852N − t85N

)

P =
ln
(
t854N−t852N
t852N−t85N

)
ln(2)

The constant C can be found using

C =
t854N − t852N
2P (2P − 1)

For N = 2, these constants were calculated from the results of the series with 10, 20, and 40 terms
and found to be P = −1.3, and C = −75.0. Using these values, the Richardson error of the best
solution that was evaluated (40 terms), was calculated using

E4N = C(4N)P = −75.0(4 ∗ 10)−0.1.3 = −0.57min.

The L2 Richardson error, L2 was also calculated for initial temperature, T0 using

L2N = T02N − T0N

The log of this error was then plotted verses the log of the number of terms in the series solution.
The expected behavior is a linear decrease.
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Using the equation for the linear fit, an estimate for the number of terms required in order to achieve
an error in initial temperature less than a certain value, ϵ, can be determined. For ϵ = 1x10−4 it
was estimated that 3.9x103 terms would be required. The largest solution that was actually built
had only 40 terms, so achieving this target could require increased computer resources.
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6 Appendix: code for plotting

1 %% ECH_259_plot_code
2 %Notes: does not run on click
3 %Needs results of "ECH_259_clay_swackhamer_project_solution"
4
5 %% Visualize L2 error
6 %Whatever values are stored in Lvals will be analyzed
7 %To run this code for L2 norm of initial temperature,
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8 %create a smaller mesh, for instance t = [0, 1];
9

10 Lvals = t85;
11 for i = 1:1:length(Lvals)-1
12 L2(i) = ((Lvals(i+1) - Lvals(i))^2)^(1/2);
13 end
14 logN = log(NtermsRecord(1:length(L2)))';
15 logErr = log(L2)';
16
17 %Plot data and create fit
18 figure, scatter(logN, logErr, 20, 'bo'); box on;
19 [f, gof] = fit(logN(5:end), logErr(5:end), 'poly1');
20
21 %Evaluate fit for plotting
22 fitFun = @(dummyVar) f.p1*logN + f.p2;
23 fitVals = fitFun(logN);
24
25 hold on
26 plot(logN, fitVals, 'r-', 'LineWidth', 2)
27 title('Initial Temperature L2 Error', 'FontSize', 14)
28 xlabel('ln(number terms)', 'FontSize', 14)
29 ylabel('ln(L2 error)', 'FontSize', 14)
30 leg = legend('Data', 'Linear fit');
31 leg.FontSize = 12;
32 leg.Location = 'north';
33 p = leg.Position;
34
35 %Add annotation with equation and rsquare
36 dim = [p(1), 0.7*(p(2)), p(3), p(3)];
37 message1 = horzcat('ln(err) = ', num2str(round(f.p1,4)),...
38 '*ln(N) + ', num2str(round(f.p2, 4)));
39 message2 = horzcat('R^2 = ', num2str(round(gof.rsquare,4)));
40
41 str ={message1,message2};
42 annotation('textbox', dim, 'String', str, 'FitBoxToText',...
43 'on', 'BackgroundColor','white',...
44 'FontSize', 12, 'LineStyle', 'none');
45
46 %Estimate how many terms we would need to actually achieve
47 %error less than epsilon
48 epsilon = log(1e-4);
49 slope = f.p1;
50 intercept = f.p2;
51 estimateN = exp((epsilon - intercept)/slope); %recall x=ln(N)
52 %}
53
54 %% Visualize t85 vs N
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55
56 figure
57 scatter(NtermsRecord, t85, 30, 'bo', 'filled'); box on
58 title('Cooling time depends on number of terms', 'FontSize', 16)
59 xlabel('N', 'FontSize', 16)
60 ylabel('Time to reach 85ř (min)', 'FontSize', 16)
61
62
63 %% Visualize Temperature profile
64 %
65 figure; hold on
66 plot(t, Tf, 'o', 'MarkerFaceColor', map(1,:),...
67 'LineStyle', ':', 'LineWidth', 1.5, 'MarkerSize', 3);
68 x70 = [min(t), max(t)];
69 y70 = [70, 70];
70 plot(x70, y70, 'LineWidth', 1, 'LineStyle', '--');
71 x32 = [min(t), max(t)];
72 y32 = [32, 32];
73 plot(x32, y32, 'LineWidth', 1);
74 scatter(t(t85ind), 85, 200, 'p', 'filled')
75 leg = legend(strcat('Solution, N = ', num2str(Nterms)),...
76 'T room = 70řF', 'T ice cream = 32řF', strcat('t85=',...
77 num2str(round(t85(end),1)), 'min'));
78 leg.Location = 'northeast';
79 leg.FontSize = 14;
80 xlabel('Time, (min)', 'FontSize', 16)
81 ylabel('Temperature, řF', 'FontSize', 16)
82 title('Volume average temperature of pie', 'FontSize', 16)
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